

DATA SCIENCE

with PYTHON

INTRODUCTION TO DATA SCIENCE:

- What is Data Science?
- Who is Data Scientist and who can become a Data Scientist?
- Real time process of Data Science
- Data Science Applications
- > Technologies used in Data Science
- > Prerequisites knowledge to learn Data Science

INTRODUCTION TO MACHINE LEARINING:

- What is Machine Learning?
- How Machine will learn like Human Learning?
- > Traditional Programming vs. machine learning
- Machine Learning engineer responsibilities
- Types of learning
 - Supervised learning
 - Un-supervised learning
- Machine learning algorithms: KNN, Naïve-bayes, Decision trees, Classification rules, Regression (Linear Regression, Logistic Regression), K-means clustering, Association rules, Support Vector Machine, Random Forest.

PYTHON PROGRAMMING:

- What is Python? History of Python
- > Python Features, Applications of Python
- Downloading and Installing Python
- > Python IDE: Jupyter Notebook & Spyder | ng | ntelligence
- What is Anaconda Navigator?
- Downloading and Installing Anaconda, Jupyter Notebook & Spyder
- Python Programming vs. Existing Programming
- Interactive Mode Programming & Script Mode Programming
- > Python Identifiers, Reserved Words
- Lines and Indentations, Quotations, Comments
- Assigning values to variables

- Operators Arithmetic Operators, Comparison (Relational) Operators, Assignment Operators, Logical Operators, Bitwise Operators, Membership Operators, Identity Operators
- Decision Making and Loops
- Flavors in Python, Python Versions
- > Data Types: int, float, complex, bool, str
- ➤ List, Tuple, Range, Bytes & Bytearray
- Set, Frozenset, Dict, None
- > Inbuilt Functions in Python, Slice operator Indexing
- Mutable vs. Immutable, Modules and Packages
- Database Connection PyMySQL, Defining & Manipulating

NumPy with Python:

- NumPy Environment setup in Python, Features of NumPy
- > Array Creation, Indexing & Slicing, Array Manipulation
- Mathematical Functions, Statistical Functions

Pandas with Python:

- Pandas Environment setup in Python
- Features of Pandas, Data Structures
- Series Create Series, Accessing Data from Series with Position
- DataFrame Features of DataFrame, Create DataFrame, DataFrame from List, Dict, Row & Column Selecting, Adding & Deleting
- Panel Create and select data from Panel
- Indexing & Selecting Data, Statistical Functions
- Merging / Joining, Categorical Data

Loading and Reading Data:

- > DATA EXTRACTION FROM CSV
 - Getting and Setting the Working Directory
 - Input as CSV File, Reading a CSV File
 - Analyzing the CSV File, Writing into a CSV File
- DATA EXTRACTION FROM URL
- > DATA EXTRACTION FROM CLIPBOARD | Intelligence
- > DATA EXTRACTION FROM EXCEL
 - Install "xlsx" Package
 - Verify and Load the "xlsx" Package, Input as "xlsx" File
 - Reading the Excel File, Writing the Excel File
- > DATA EXTRACTION FROM DATABASES
 - RMySQL Package, Connecting to MySql
 - Querying the Tables, Query with Filter Clause
 - Updating Rows in the Tables, Inserting Data into the Tables
 - Creating Tables in MySql, Dropping Tables in MySql
 - Using dplyr and tidyr package

STATISTICS:

- Mean, Median and Mode
- Data Variability: Range, Quartiles, IQR, Calculating Percentiles
- Variance, Standard Deviation, Statistical Summaries
- > Types of Distributions Normal, Binomial, Poisson
- Probability Distributions, Skewness, Outliers
- ➤ Data Distribution, 68–95–99.7 rule (Empirical rule)
- Descriptive Statistics and Inferential Statistics
- Statistics Terms and Definitions, Types of Data
- Data Measurement Scales, Normalization
- Measure of Distance, Euclidean Distance
- Probability Calculation Independent & Dependent
- > Hypothesis Testing, Analysis of Variance

DATA VISUALIZATION:

- > Data Visualization with MatPlotLib and Seaborn
- Data Visualization with Graphics and GrDevices
- High Level Plotting and Low Level Plotting
- Pie Charts Title, Colors, Slice Percentages, Chart Legend
- > 3D Pie Charts
- Box Plots Outliers, Ranges, IQR, Quantiles, Median, Data Distribution Analysis, 68–95–99.7 rule (Empirical rule)
- ➤ Bar Charts Label, Title, Colors, Group Bar, Stacked Bar Charts
- Histograms Range of X and Y Values
- Line Graphs Types: Points, Lines, Both, Overplotted, Steps
- Scatterplots
- Combining Plots Par and Layout

LAZY LEARNING - CLASSIFICATION USING NEAREST NEIGHBORS:

- Understanding Classification Using Nearest Neighbors
 - The KNN algorithm
 - Calculating distance
 - Choosing an appropriate k
 - Preparing data for use with KNN
- > Diagnosing breast cancer with the KNN algorithm
 - Collecting data
 - Exploring and preparing the data
 - Transformation-normalizing numeric the data
 - Data preparing –creating training and test datasets
 - Training a model on the data
 - Evaluating model performance
 - Improving model performance
 - Transformation –z-score standardization
 - Testing alternative values of k

PROBABILISTIC LEARNING – CLASSIFICATION USING NAÏVE BAYES:

- Understanding Naïve-Bayes
 - Basic concepts of Bayesian methods
 - Probability
 - Joint probability
 - Conditional probability with Bayes' theorem
- > The Naïve Bayes Algorithm
 - The Naïve Bayes classification
 - The Laplace estimator
 - Using numeric features with Naïve Bayes
- > Filtering Mobile Phone Spam with the Naïve-Bayes Algorithm
 - Collecting data
 - Exploring and preparing the data
 - Data preparation –processing text data for analysis
 - Data preparation –creating training and test datasets
 - Visualizing text data-word clouds
 - Data preparation-creating indicator features for frequent words
 - Training a model on the data
 - Evaluating model performance
 - Improving model performance

DIVIDE AND CONQUER – CLASSIFICATION USING DECISION TREES AND RULES:

- Understanding decision trees
 - Divide conquer
 - The C5.0 decision tree algorithm
 - Choosing the best split
 - Pruning the decision tree
- Identifying risky bank loans using C5.0 decision trees
 - Collect data
 - Exploring and preparing the data
 - Data preparation-creating random training and test datasets
 - Training a model on the data
 - Evaluating model performance
 - Improving model performance
 - Boosting the accuracy of decision trees
 - Making some mistakes more costly than others
- > Understanding classification rules
 - Separate and conquer
 - The one rule algorithm
 - The RIPPER algorithm
 - Rules from decision trees

> Identifying poisonous mushrooms with rule learners

- Collecting data
- · Exploring and preparing data
- Training a model on the data
- Evaluating model performance
- Improving model performance

FORECASTING NUMARIC DATA - REGRESSION METHODS:

- Understanding regression
 - Simple linear regression
 - Ordinary least squares estimation
 - Correlations
 - Multiple linear regressions
- Predicting medical expenses using linear regression
 - Collecting data
 - Exploring and preparing data
 - Exploring relationships among features- the correlation matrix
 - Visualizing relationships among features –the scatter plot matrix
 - Training a model on the data
 - Evaluating model performance
 - Improving model performance
 - Model specification –adding non-linear relationships
 - Transformation –converting a numeric variable to a binary indicator
 - Model specification –adding interaction effects
 - Putting it all together-an improved regression model
- Understanding regression trees and model trees
 - Adding regression to trees
- Estimating the quality of wines with regression trees and model trees
 - Collecting data
 - Exploring and preparing the data
 - Training a model on the data
 - Visualizing decision trees
 - Evaluating model performance
 - Measuring performance with mean absolute error
 - Improving model performance

FINDING PATTERNS - MARKET BASKET ANALYSIS USING ASSOCIATION RULES:

- > Understanding Association Rules
 - The Apriori algorithm for association rule learning
 - Measuring rule interest –support and confidence

- Building a set of rules with the Apriori
- Identifying frequently purchased groceries with association rules
 - Collecting data
 - Exploring and preparing the data
 - Data preparation creating a sparse matrix for transaction
 - Visualizing item support –item frequency plots
 - Visualizing transaction data-plotting the sparse matrix
 - Training a model on the data
 - Evaluating model performance
 - Improving model performance
 - Sorting the set of association rules
 - Taking subsets of association rules
 - Saving association rules to a file or data frame

FINDING GROUPS OF DATA - CLUSTERING WITH K-MEANS:

- Understanding Clustering
 - Clustering as a machine learning task
 - The K-means algorithm for clustering
 - Using distance to assign and update cluster
 - Choosing the appropriate number of cluster
- Finding teen market segments using K-means clustering
 - Collecting data
 - Exploring and preparing the data
 - Data preparation –dummy coding missing values
 - Data preparing –imputing missing values
 - Training a model on the data
 - Evaluating model performance
 - Improving model performance

EVALUATING MODEL PERFORMANCE:

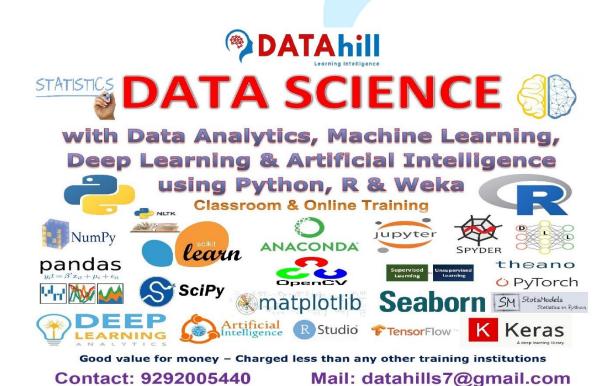
- Measuring Performance for Classification
 - Working with classification prediction data in R
 - A closer look at confusion matrices
 - telligence Using confusion matrices to measure performance
 - Beyond accuracy other measure of performance
 - The kappa statistic
 - Sensitivity and specificity
 - Precision and recall
 - The F- measure
 - Visualizing performance TRADEOFFS
 - ROC curves
- > Estimating future performance
 - The holdout method
 - Cross-validation

DATAhill Solutions, Near Malabar Gold, KPHB, Hyderabad. Ph: +91 9292005440, +91 7780163743, info@datahill.in, www.datahill.in

Bootstrap sampling

IMPROVING MODEL PERFORMANCE:

- Tuning Stock Models for Better Performance
 - Using caret for automated parameter tuning
 - o Creating a simple tuned model
 - Customizing the tuning process
- > Improving Model Performance with Meta Learning
 - Understanding ensembles
 - Bagging
 - Boosting
 - Random forests
 - Training random forests
 - Evaluating random forest performance


Trainer: Mr. Srinivas Reddy

- Trainer received Masters of Technology in Computer Science & Engineering from JNTU, MICROSOFT Certified Professional, Certified from IIT Kanpur & IIT Ropar.
- Having 10+ Years of Experience in Software & Training.
- His experience Includes Managing, Data Processing, Data Cleaning, Predicting and Analyzing of Large volume of Business Data.
- Expertise in Data Science, Data Analytics, Machine Learning, Deep Learning, Artificial Intelligence, Python, R, Weka, Data Management & BI Technologies.
- ➤ Having publications and patents in various fields such as machine learning, data security, and data science technologies.
- ➤ Professionally, he is Data Science management consultant with over 7+ years of experience in finance, retail, transport and other industries.

KEY FEATURES IN THIS TRAINING

- Best training materials are provided with Lab Exercises, Data sets, Codes, Quizzes, Case studies on real data.
- ➤ For every online session Recorded video & live running notes will provide.
- > Real time Training with live Scenarios and Applications.
- Support in Resume preparation and Interview preparation.
- Conduct Mock interviews through Skype and Telephonic after course completion.
- You can shift the batch to weekday batches (morning or evening) and weekend batches.
- > Any number of batches can be attend in a year without any extra fees
- Job support for 1 month after successfully placing the candidates.
- Online help on Doubt Clearance, Career Guidance, Resume Preparation and Interview Preparation.

DATAhill Solutions, Near Malabar Gold, KPHB, Hyderabad. Ph: +91 9292005440, +91 7780163743, info@datahill.in, www.datahill.in